УДК 621.311.001.57 + 004.942

Шевалдина Е.И., кандидат социологических наук, доцент, ФГБОУВО Уфимский государственный нефтяной технический университет, г. Уфа, Россия.

Шевалдина К.С., студент направления подготовки: «Физика квантовых систем и квантовые технологии», Институт физики ФГАОУ ВО Казанский (Приволжский) федеральный университет, г. Казань, Россия

ЦЕНТР ОБРАБОТКИ ДАННЫХ НА АТОМНОЙ ЭНЕРГИИ

Аннотация. В условиях растущего потребления электроэнергии, вызванного развитием искусственного интеллекта и увеличением объемов данных, центры обработки данных (ЦОД) сталкиваются с серьезными вызовами в обеспечении стабильного энергоснабжения. Атомная энергетика, особенно маломощные модульные реакторы (ММР), представляют собой перспективное решение, способное обеспечить ЦОД надежной и экологически чистой энергией. Эти реакторы могут работать круглосуточно и генерировать значительное количество энергии с низким углеродным следом, что способствует декарбонизации сектора. Однако внедрение ММР в ЦОД сопряжено с барьерами, общественным ограниченной нормативными мнением доступностью технологий. В статье рассматриваются необходимость, предпосылки, преимущества и трудности создания центров обработки данных на атомной энергии (ЦОДАЭ) путём интеграции ММР в инфраструктуру ЦОД, а также потенциальные решения для обеспечения устойчивого энергоснабжения в условиях растущего спроса на электроэнергию.

Ключевые слова: центр обработки данных; дата-центр; искусственный интеллект; маломощный модульный реактор; энергоснабжение; атомная энергия.

Развитие искусственного интеллекта (ИИ) существенно влияет на увеличение потребления электроэнергии, что обусловлено несколькими важными факторами. К ним относятся рост вычислительных мощностей, необходимость обучения и внедрения ИИ-моделей и увеличение числа дата-центров, специально оптимизированных для работы с ИИ.

Рост вычислительных мощностей объясняется тем, что современные технологии ИИ, особенно генеративные модели, требуют значительных ресурсов для обработки данных. Обучение крупных языковых моделей (LLM) и других сложных систем ИИ требует огромного объема вычислений и, соответственно,

значительного количества энергии. Для обучения одной такой модели может потребоваться от 85,4 до 134,0 ТВт·ч электроэнергии [1].

Для обработки больших объемов данных и выполнения сложных алгоритмов требуется мощное оборудование, такое как графические процессоры (GPU). Например, новые графические процессоры от Nvidia могут потреблять до 1200 Вт энергии каждый. При этом в оценках учитывается только мощность, потребляемая чипами, и не учитывается потребление энергии системами хранения, памятью, сетями и другими компонентами, используемыми для генеративного ИИ [2].

Средняя нагрузка на серверную стойку обычного дата-центра составляет от 7 до 12 кВт в зависимости от сферы деятельности и бизнеса, тогда как стойки, использующиеся для работы ИИ, потребляют от 30 до 100 кВт [3].

Однако не только вычислительные процессы требуют электроэнергии, необходимо учитывать расходы на охлаждение серверов и инфраструктуры датацентров. Компании расходуют миллиарды литров воды и значительное количество электроэнергии для поддержания оптимальной температуры в своих дата-центрах. Энергозатраты на системы охлаждения обычно составляют 30–50% от общего потребления энергии.

Жидкостное охлаждение стало общепринятой практикой, и новые методы включают полное погружение и охлаждение непосредственно на уровне кристаллов. Например, в 2018 году компания Microsoft затопила свой центр обработки данных на дне Шотландского моря, погрузив 864 сервера и 27,6 петабайта хранилища на глубину 35,7 метра. Охлаждающий эффект морской воды значительно повысил энергоэффективность этого решения [4].

По прогнозам аналитической корпорации Gartner, Inc., в течение следующих двух лет потребление электроэнергии в центрах обработки данных вырастет на 160%. В результате к 2027 году 40% существующих ЦОД с ИИ будут ограничены в работе из-за нехватки электроэнергии [5].

По словам Боба Джонсона, вице-президента-аналитика Gartner, «взрывной рост новых гипермасштабируемых центров обработки данных для внедрения GenAI создаёт ненасытный спрос на электроэнергию, который превысит

возможности поставщиков услуг по достаточно быстрому расширению своих мощностей, это угрожает перебоями в подаче электроэнергии и приведёт к её дефициту, что ограничит рост новых центров обработки данных для GenAI и других целей с 2026 года».

По прогнозам Международного энергетического агентства (IEA), к 2026 году потребление энергии дата-центрами может удвоиться и составить 1000 ТВт·ч. Это эквивалентно годовому потреблению электроэнергии в таких странах, как Япония [6].

Оценки компании Gartner несколько скромнее, её аналитики предполагают, что в 2027 году мощность, необходимая центрам обработки данных для работы дополнительных серверов, оптимизированных для ИИ, достигнет 500 тераватт-часов (ТВт·ч) в год, что в 2,6 раза больше, чем в 2023 году.

В разных уголках мира планируется строительство новых, более крупных центров обработки данных, а это означает, что дефицит электроэнергии сохранится на длительный срок. Ввод в эксплуатацию новых мощностей для передачи, распределения и производства электроэнергии может занять несколько лет. Неизбежным следствием этого дефицита станет рост цен на электроэнергию. Эти дополнительные расходы лягут на плечи поставщиков продуктов и услуг в области ИИ, что, в свою очередь, отразится на всех конечных потребителях ИИ-технологий.

«Центры обработки данных являются основой цифровых инноваций, но их огромные потребности в энергии стали критическим узким местом, препятствующим росту», — сказал Уильям Терон, основатель и генеральный директор Deep Atomic [7].

Россия не стоит в стороне от общемировых процессов. В последние годы вслед за ростом объёма больших данных стремительно увеличивается и количество центров обработки данных. Согласно оценке аналитической компании Busines Stat, за 2018-2022 годы рынок ЦОД в России вырос более чем в 2,5 раза. По расчётам компании в России работает более 80 коммерческих дата-центров. Среди крупнейших – центр «Ростелекома», IXcellerate, DataPro, Selectel [8].

По данным компании iKS-Consulting, по итогам 2023 года в России в коммерческих ЦОД введено 70 100 стойко-мест, что на 20,9% больше, чем годом ранее. Количество стоек в корпоративных ЦОД, по оценкам iKS-Consulting, на конец 2023 года составило около 310000 [9].

Электроснабжение центров обработки данных в России в основном осуществляется через подключение к Единой энергосистеме страны. Для обеспечения стабильного энергоснабжения дата-центра необходимо учитывать не только потребляемую мощность, организовывать резервирование и автоматизацию систем электроснабжения, но и соблюдать требования по энергоэффективности и безопасности. По данным АО «Системный оператор ЕЭС», в апреле 2024 года объем фактически присоединенной мощности ЦОД, исключая «серый» майнинг, оценивался в 2576 МВт, при этом почти столько же было утвержденных технических условий на подключение. В целом, мощность центров обработки данных, включая весь майнинг, может вырасти до 9630 МВт в обозримом будущем [10].

Увеличение энергопотребления связано с новыми цифровыми реалиями, такими как запуск цифровых проектов, рост популярности искусственного интеллекта и увеличение объема хранимых и обрабатываемых данных. Центры обработки данных развиваются кластерами в местах потребления, причем в Москве сосредоточено более 70% ЦОД, в Санкт-Петербурге — свыше 10%, а остальные расположены по всей территории России. Это распределение, за исключением Москвы, благоприятно сказывается на развитии искусственного интеллекта и не является критичным для ситуации с энергопотреблением в стране.

Тем не менее, необходимо учитывать стремительное развитие ЦОД в России, что требует обеспечения их современными энергетическими инфраструктурами и надежными источниками энергии. Поскольку центры обработки данных нуждаются в бесперебойном электроснабжении круглосуточно, единственными подходящими источниками энергии могут стать гидроэлектростанции, электростанции на ископаемом топливе или атомные электростанции.

Таким образом, помимо решения вопросов энергоэффективности работы ЦОД, становится актуальной проблема обеспечения их гарантированным и достаточным энергоснабжением с учетом возможного роста числа и мощности этих центров.

Для удовлетворения такого уровня потребления требуется возобновляемый источник энергии. Атомная энергетика представляет собой уникальный вариант экологически чистой энергии для центров обработки данных. Ядерное деление и синтез способны генерировать огромное количество энергии с низким углеродным следом. В отличие от источников энергии, зависящих от погодных условий, таких как ветер и солнце, ядерные реакторы работают круглосуточно. Другие чистые источники энергии, такие как водород, солнечная и ветровая энергия, могут служить дополнительными источниками, но ядерная энергетика остается наиболее мощным и практически неисчерпаемым вариантом для обеспечения центров обработки данных.

Причём не просто ядерная энергетика, а энергетика, основанная на энергии, вырабатываемой малыми модульными реакторами (ММР, англ. - SMR). Эти реакторы представляют собой меньшие по размеру и более компактные версии обычных ядерных реакторов. При этом ММР на наш взгляд должен быть физически совмещён с ЦОД, что по сути будет представлять из себя центр обработки данных на атомной энергии (ЦОДАЭ, англ. - DCNE). Такие ядерные реакторы на быстрых нейтронах обычно используются для питания подводных лодок и авианосцев, обеспечивая их энергией на срок до 20 лет без перебоев. Если ядерные реакторы на быстрых нейтронах можно будет безопасно производить в составе ЦОДАЭ в больших масштабах, они смогут стать реальным выходом из сложившегося дефицита энергии в сфере ИТ. Причём это будут инфраструктурные проекты с минимальными требованиями к обслуживанию.

Так, например, американский инвестиционный фонд Digital Realty, являющийся провайдером дата-центров, который строит, владеет, управляет и инвестирует в независимые от оператора центры обработки данных по всему миру, считает атомную энергетику оптимальным источником энергии для питания

центров обработки данных искусственного интеллекта. Директор Digital Realty Крис Шарп предсказывает, что в не столь отдаленном будущем центры обработки данных будут иметь встроенные ММР [11].

Малые модульные ядерные реакторы — это новые разработки, которые обещают ускорить внедрение надёжной безуглеродной энергетики по мере роста спроса на электроэнергию в центрах обработки данных. Как правило, мощность таких реакторов составляет 300 мегаватт или меньше. Они могут собираться из нескольких модулей на месте, что снизит капитальные затраты, которые препятствуют строительству более крупных установок.

Центры обработки данных на основе усовершенствованных маломощных модульных реакторов, мощность которых колеблется от десятков до сотен мегаватт, обладают множеством преимуществ.

Одним из ключевых достоинств ЦОДАЭ может стать низкий уровень выбросов углекислого газа. Производство и потребление энергии являются основными антропогенными источниками загрязнения атмосферы. К таким загрязнителям относятся твердые частицы, оксиды серы и оксиды азота, которые ухудшают качество воздуха. Ядерная энергетика практически не производит загрязняющих веществ, что позволяет ЦОДАЭ способствовать поддержанию чистоты воздуха и снижению уровня вредных выбросов.

Согласно данным некоммерческой исследовательской организации «Оur World in Data», сжигание угля приводит к выбросам парниковых газов в объеме 970 тонн на гигаватт-час, что в 160 раз превышает уровень выбросов при использовании ядерной энергии. Сжигание нефти вызывает на 714 тонн больше выбросов, чем ядерная энергия, а сжигание природного газа — на 434 тонны больше. В среднем солнечная и ветровая энергия тоже приводят к большему количеству выбросов: на 47 тонн и 5 тонн соответственно по сравнению с ядерной энергией. Таким образом, использование ядерной энергии может значительно ускорить процесс декарбонизации центров обработки данных по всему миру [12].

ЦОДАЭ имеют относительно небольшое физическое присутствие. Датацентры, в которые модульно смонтированы MMP, суммарно занимают значительно меньше места, чем дата-центры, запитанные от других источников энергии. Для работы ММР мощностью 1000 МВт требуется площадь в 5 кв. км, для производства такого же количества энергии ветряным электростанциям и солнечным электростанциям требуется в 360 и в 75 раз больше места соответственно.

ММР обычно имеют мощность до 300 МВт и могут быть расположены в компактных модулях. Это и позволяет нам говорить о возможности создания ЦОДАЭ, то есть об установке ММР непосредственно на территории дата-центров, что снижает затраты на транспортировку электроэнергии и минимизирует потери при передаче.

ММР в составе ЦОДАЭ обеспечивают стабильное и надежное питание. Поскольку ядерная энергия обладает высокой энергоёмкостью, то есть количеством электроэнергии, которое вырабатывает генератор при максимальной мощности, ММР имеют наивысшую плотность энергии, то есть вырабатывают большее количество энергии при малом расходе топлива. ММР могут работать круглосуточно, не зависят от погодных условий, как это происходит с солнечными и ветряными электростанциями, и обеспечивают стабильную и надёжную подачу электроэнергии, которая необходима центрам обработки данных для обеспечения максимальной бесперебойной работы.

ЦОДАЭ обладают более высокой экономической эффективностью. Хотя первоначальные инвестиции в строительство ЦОДАЭ могут быть значительными, их эксплуатационные расходы обычно ниже благодаря высокой эффективности и низким затратам на топливо. ЦОДАЭ также требуют меньше времени на строительство по сравнению с традиционными атомными электростанциями и отдельно строящимися ЦОД.

Реакторы на быстрых нейтронах в составе ЦОДАЭ требуют минимального вмешательства со стороны операторов центров обработки данных, хотя это не отменяет того факта, что техническое обслуживание оборудования и утилизация ядерных отходов должны выполняться высококвалифицированными специалистами.

Создание ЦОДАЭ сопряжено с рядом трудностей, несмотря на очевидные преимущества. Одной из главных проблем являются нормативные барьеры. Строгие правила и высокие требования к безопасности могут замедлить процесс проектирования и строительства таких объектов. Безопасность занимает центральное место, поэтому использование ядерной энергии требует соблюдения четких стандартов, которым должны соответствовать ЦОДАЭ.

Еще один важный фактор — общественное мнение. Ядерная энергия нередко вызывает у людей опасения из-за потенциальных рисков, связанных с безопасностью и утилизацией отходов. Прошлые аварии на ядерных реакторах, такие как катастрофа на Чернобыльской АЭС, Фукусима и Три-Майл-Айленд, оставили в сознании общества негативные ассоциации с использованием ядерной энергии.

В настоящее время количество доступных ММР ограничено. Это связано с необходимостью значительных капиталовложений и длительными сроками разработки. Финансирование строительства ядерных объектов представляет собой сложную задачу, поэтому только крупнейшие центры обработки данных могут рассматривать возможность использования ядерной энергии. Помимо этого, эксплуатация таких объектов требует значительных расходов из-за строгих протоколов безопасности и необходимости привлечения высококвалифицированного персонала для управления реакторами.

Еще одной важной проблемой станет утилизация отходов. Хотя ММР производят относительно небольшое количество отходов, отработанное топливо остаётся опасным материалом, который сложно утилизировать. Соблюдение строгих стандартов безопасности — сложная, но необходимая задача для обеспечения защиты. В то же время технологии переработки и повторного использования ядерной энергии всё ещё находятся на стадии разработки и тестирования.

Наконец, необходимо подтвердить перспективность совмещения центров обработки данных с ММР для создания устойчивого энергоснабжения. Это

направление требует дополнительных исследований и доказательств своей эффективности.

На данный момент в мире существует всего две мини-атомных электростанции (мини-АЭС), которые уже введены в эксплуатацию и могут рассматриваться как платформа для создания ММР в составе ЦОДАЭ.

Плавучая АЭС «Академик Ломоносов» (Россия). Эта станция была впервые подключена к электросети в декабре 2019 года и введена в промышленную эксплуатацию в мае 2020 года. Она имеет мощность около 70 МВт и предназначена для обеспечения электроэнергией удалённых районов, таких как Чукотка [13].

Модульный реактор HTR-PM (Китай). В 2021 году в Китае был запущен первый модульный высокотемпературный газоохлаждаемый реактор HTR-PM, который имеет мощность 210 МВт. Этот проект стал значительным шагом в развитии маломощных атомных реакторов [14].

Во всех странах с развитой ядерной энергетикой активно ведутся работы по созданию усовершенствованных МММ [15]. Так, например, специалисты российской атомной отрасли рассчитывают с 2032 года начать серийный выпуск мини-АЭС мощностью 10 МВт на базе реакторных установок «Шельф-М». Об этом сообщил главный конструктор реакторных установок атомных станций малой мощности (АСММ) «Научно-исследовательского и конструкторского института энерготехники имени Доллежаля (НИКИЭТ) Денис Куликов [16].

В Якутии запланировано строительство головного атомного энергоблока с реактором «Шельф-М» в районе золоторудного месторождения Совиное. Ожидается, что энергоблок будет введен в эксплуатацию в 2030 году, а серийное производство модулей начнется в 2032 году. Главная цель этой маломощной атомной станции — обеспечить автономное теплоснабжение и электроэнергию для потребителей. Тепловая мощность установки составит 35 МВт, а электрическая — 10 МВт. Станция будет масштабируемой благодаря возможности добавления дополнительных энергокапсул с реакторами.

Проект предусматривает срок службы модуля в 60 лет, а одно из главных его преимуществ — легкость транспортировки, например, с помощью баржи. Этот

проект является одним из самых маломощных среди будущих малых российских атомных электростанций. Следующим по мощности станет АЭС на базе реактора РИТМ-200Н с мощностью 55 МВт, которая будет построена в поселке Усть-Куйга для обеспечения Кючусского золоторудного месторождения. Начало строительства намечено на 2024 год, а ввод в эксплуатацию — до 2030 года. Для небольших потребностей планируется строительство реактора «Елена АМ» мощностью до 400 кВт [17].

В России активно продолжаются работы по созданию высокотехнологичных центров обработки данных, которые будут получать энергию от ММР и станут частью атомной энергетики.

ЦОД «Калининский», расположенный рядом с Калининской атомной электростанцией, стал первым в сети защищённых дата-центров «Росатома». Он способен обеспечивать мощность до 48 МВт и предлагает такие услуги, как резервное копирование и облачные вычисления. Близость к АЭС позволяет обеспечить привлекательные тарифы на электроэнергию и высокий уровень безопасности.

В Иннополисе, Татарстан, запланировано строительство нового дата-центра мощностью 16 МВт, который будет включать тысячу стоек с возможностью расширения до двух тысяч. Проект предполагает использование энергии от ближайших АЭС для обеспечения бесперебойного энергоснабжения.

На Кольской АЭС разрабатывается модульный ЦОД «Арктика» с мощностью 1 МВт и возможностью удвоения. Этот центр будет обслуживать организации, работающие в Арктической зоне, и станет базовой инфраструктурой для новых цифровых платформ и сервисов.

Концерн «Росэнергоатом» совместно с компанией «ИТК Система» работает над проектом создания модульных дата-центров на базе атомных электростанций. Пилотная площадка будет расположена на Нововоронежской АЭС, а до конца 2025 года планируется расширение проекта на Балаковскую и Смоленскую АЭС. Эти модульные ЦОД будут соответствовать требованиям Тіег III по надежности и отказоустойчивости, что делает их подходящими для стратегически важных

объектов. Одно из главных достоинств — это отсутствие необходимости в капитальном строительстве, что способствует быстрому развёртыванию инфраструктуры.

Газпром, Сбербанк, Wildberries, Северсталь и другие крупные компании строят собственные крупные дата-центры для создания гибкой и эффективной ІТ-инфраструктуры, контроля и повышения уровня безопасности критически важных данных и соблюдения требований регуляторов.

В зарубежных странах работы по созданию ММР и их совмещению с датацентрами идёт с разной степени успешностью.

Реактор CAREM (Аргентина). Этот малый модульный реактор, мощностью 27 МВт, находится на стадии завершения строительства и должен стать первым малым реактором в Аргентине, который будет введён в эксплуатацию [18].

Концепции ММР в настоящее время рассматриваются в Соединенном Королевстве, например, компаниями «Rolls-Royce» и «Holtec International». Rolls-Royce планирует начать строительство первой в своём роде электростанции на базе ММР мощностью 470 МВт в 2026 году и построить её до 2030 года. В 2022 году начался первый этап оценки конструкции ММР британскими регулирующими органами, а в 2023 году компания перешла ко второму этапу — детальной оценки технических характеристик проекта [19].

Новте International подала заявку на общую оценку конструкции MMP SMR-300 в Великобритании. Проект находится на этапе предварительного лицензирования в Комиссии по ядерному регулированию США. Основной способ применения SMR-300 — производство электроэнергии с дополнительным когенерационным оборудованием (производство водорода, хранение тепловой энергии, централизованное теплоснабжение, опреснение морской воды).

SMR-160 (США). Хотя проект ещё не завершён, компания NuScale Power планирует построить свой первый малый модульный реактор SMR-160 к 2029 году. Это будет один из первых, сертифицированных ММР в США. Конструкция ММР компании NuScale уже получила добро на эксплуатацию от Управления ядерной энергии [20].

В 2024 году компания Атагоп приобрела у Talen Energy кампус с центром обработки данных, работающий от атомной электростанции. Это соглашение дополняет её усилия по использованию безуглеродной энергии для питания центров обработки данных AWS по всему миру [21].

Некоторые крупные IT-компании начали интегрировать мини-АЭС в свои энергетические стратегии.

Так, например, Google подписала соглашение о сотрудничестве с корпорацией Nucor, чтобы помочь запустить усовершенствованные ядерные проекты [22].

«Следующее поколение усовершенствованных ядерных реакторов предлагает новый путь для ускорения развертывания ядерной энергетики благодаря их упрощенной конструкции и надежной, неотъемлемой безопасности, — заявила Google. Меньший размер и модульная конструкция могут сократить сроки строительства, обеспечить развертывание в большем количестве мест и сделать сроки реализации проекта более предсказуемыми» [23].

Компания Microsoft заключила соглашение с Constellation Energy о восстановлении реактора на станции Three Mile Island для обеспечения своих датацентров необходимой энергией. Помимо этого в Microsoft появились новые вакансии, связанные с разработкой эффективных стратегий в сфере передовой ядерной энергетики. Microsoft ищет специалистов для разработки планов по использованию малых модульных реакторов для питания своих центров обработки данных [24].

Одна из крупнейших компаний в сфере информационных технологий Oracle проектирует центр обработки данных гигаваттной мощности, который будет питаться от трёх небольших ядерных реакторов.

Председатель совета директоров и директор по технологиям корпорации Oracle Лоуренс Эллисон считает, что спрос на электроэнергию, вызванный искусственным интеллектом, становится настолько «безумным», что Oracle стремится обеспечить себя энергией с помощью ядерных технологий нового

поколения, малые ядерные реакторы могут стать источником энергии в будущем — задача состоит в том, чтобы построить первый такой реактор [25].

Швейцарский стартап Deep Atomic анонсировал планы по разработке компактного маломощного модульного реактора, который будет предназначен для обеспечения энергией растущего числа энергоемких ЦОД. Реактор МК60 на легкой воде представляет собой компактное и масштабируемое решение, соответствующее уникальным требованиям современных и будущих дата-центров, поддерживающих облачные сервисы, криптовалютные операции и приложения на основе искусственного интеллекта. Каждое устройство будет способно генерировать до 60 МВт электроэнергии и предназначено для установки непосредственно в центрах обработки данных [26].

В результате анализа текущего состояния и перспектив создания ЦОДАЭ на основе ММР можно сделать несколько ключевых выводов.

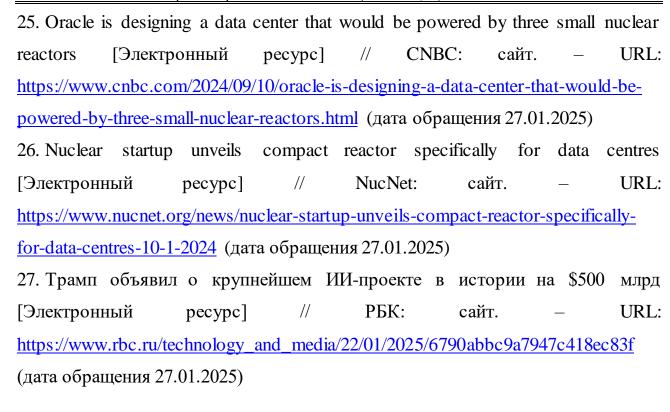
Рост потребления электроэнергии в ЦОД, обусловленный развитием ИИ и увеличением объемов обрабатываемых данных, создает серьезные вызовы для энергетической инфраструктуры. Прогнозируется, что в ближайшие годы потребление энергии в дата-центрах вырастет значительно, что приведет к дефициту электроэнергии и повышению цен. И какие бы миллиарды долларов не закачивались в проекты по развитию ИИ, в конечном итоге всё ограничится лимитами имеющейся электроэнергии [27].

Атомная энергетика, особенно в виде ММР, представляет собой эффективное решение для обеспечения ЦОД экологически чистой и стабильной энергией. ММР обладают высокой плотностью энергии и могут работать круглосуточно, что делает их идеальными для нужд дата-центров.

Несмотря на очевидные преимущества использования ММР в ЦОД, существуют значительные барьеры для их внедрения. Это включает строгие нормативные требования и ограниченное количество проектов ММР. Эти факторы могут замедлить процесс разработки и внедрения таких технологий.

В любом случае, успешная интеграция ММР в инфраструктуру ЦОД требует дальнейших исследований и подтверждения их эффективности. Важно

учитывать как технические аспекты, так и общественное мнение при продвижении ядерной энергетики как решения для растущих потребностей в электроэнергии в цифровую эпоху.


Список использованных источников

- 1. Joule: Article on energy consumption [Электронный ресурс] // Cell: сайт. URL: https://www.cell.com/joule/fulltext/S2542-4351(23)00365-
- 3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS 2542435123003653%3Fshowall%3Dtrue (дата обращения 27.01.2025)
- 2. Generative AI to account for 1.5% of world's power consumption by 2029 [Электронный ресурс] // AI Wire: сайт. URL: https://www.aiwire.net/2024/07/08/generative-ai-to-account-for-1-5-of-worlds-power-consumption-by-2029/ (дата обращения 27.01.2025)
- 3. Повышенные нагрузки: как развитие ЦОД влияет на энергопотребление в России [Электронный ресурс] // Sber: сайт. URL: https://sber.pro/publication/povishennie-nagruzki-kak-razvitie-tsod-vliyaet-na-energopotreblenie-v-rossii/ (дата обращения 27.01.2025)
- 4. Microsoft's underwater data center project Natick [Электронный ресурс] // The Verge: сайт. URL: https://www.theverge.com/2018/6/6/17433206/microsoft-underwater-data-center-project-natick (дата обращения 27.01.2025)
- 5. Gartner predicts power shortages will restrict 40 percent of AI data centers by 2027 [Электронный ресурс] // Gartner: сайт. URL: https://www.gartner.com/en/newsroom/press-releases/2024-11-12-gartner-predicts-power-shortages-will-restrict-40-percent-of-ai-data-centers-by-20270 (дата обращения 27.01.2025)
- 6. Electricity 2024 [Электронный ресурс] // IEA: сайт. URL: https://www.iea.org/reports/electricity-2024/executive-summary (дата обращения 27.01.2025)

- 7. Deep Atomic launches data center-specific SMR [Электронный ресурс] // Data Center Dynamics: сайт. URL: https://www.datacenterdynamics.com/en/news/deep-atomic-launches-data-center-specific-smr/ (дата обращения 27.01.2025)
- 8. Данные о центрах обработки данных в России [Электронный ресурс] // BusinesStat: caйт. URL: https://businesstat.ru/images/demo/data_centers_russia_demo_businesstat.pdf (дата обращения 27.01.2025)
- 9. Опрос по центрам обработки данных [Электронный ресурс] // IKS Consulting: сайт. URL: https://survey.iksconsulting.ru/page30265406.html (дата обращения 27.01.2025)
- 10. Пресс-релиз о новых решениях для центров обработки данных [Электронный ресурс] // SO-UPS: сайт. URL: https://www.so-ups.ru/news/press-release/press-release/press-release-view/news/24642/ (дата обращения 27.01.2025)
- 11. How to implement nuclear energy for data centers [Электронный ресурс] // TechTarget: сайт. URL: https://www.techtarget.com/searchdatacenter/tip/How-to-implement-nuclear-energy-for-data-centers (дата обращения 27.01.2025)
- 12. Nuclear energy [Электронный ресурс] // Our World in Data: сайт. URL: https://ourworldindata.org/nuclear-energy (дата обращения 27.01.2025)
- 13. Пока США только создают ММР, Росатом меняет топливо на первой в мире мини-АЭС [Электронный ресурс] // EADaily: сайт. URL: https://eadaily.com/ru/news/2023/11/24/poka-ssha-tolko-sozdayut-mmr-rosatom-menyaet-toplivo-na-pervoy-v-mire-mini-aes (дата обращения 27.01.2025)
- 14. Первый в мире высокотемпературный ГА [Электронный ресурс] // Страна Росатом: сайт. URL: https://strana-rosatom.ru/2021/09/17/pervyj-v-mire-vysokotemperaturnyj-ga/ (дата обращения 27.01.2025)
- 15. Новые технологии для центров обработки данных [Электронный ресурс] // Habr: сайт. URL: https://habr.com/ru/companies/timeweb/articles/674834/ (дата обращения 27.01.2025)
- 16. Серийное производство российских мини-АЭС мощностью 10 МВт начнется в 2032 году [Электронный ресурс] // HighTech: сайт. URL:

https://hightech.plus/2023/06/07/seriinoe-proizvodstvo-rossiiskih-mini-aes-moshnostyu-10-mvt-nachnetsya-v-2032-godu (дата обращения 27.01.2025)

- 17. Основной этап создания малой АЭС в Якутии стартует до конца 2024 года [Электронный ресурс] // Переток: сайт. URL: https://peretok.ru/news/engineering/27729/ (дата обращения 27.01.2025)
- 18. Argentina's CAREM SMR project to have Critical Design Review [Электронный ресурс] // World Nuclear News: сайт. URL: https://www.world-nuclear-news.org/Articles/Critical-Design-Review-for-Argentina-s-CAREM-small (дата обращения 27.01.2025)
- 19. Small Modular Reactors [Электронный ресурс] // Atomic Expert: сайт. URL: https://atomicexpert.com/small_modular_reactors (дата обращения 27.01.2025)
- 20. Новые технологии для центров обработки данных [Электронный ресурс] // Eenergy Media: сайт. URL: https://eenergy.media/news/27689 (дата обращения 27.01.2025)
- 21. Amazon goes nuclear, investing more than \$500 million to develop small modular reactors [Электронный ресурс] // CNBC: сайт. URL: https://www.cnbc.com/2024/10/16/amazon-goes-nuclear-investing-more-than-500-million-to-develop-small-module-reactors.html (дата обращения 27.01.2025)
- 22. Google, Microsoft and Nucor team up on clean energy [Электронный ресурс] // World Nuclear News: сайт. URL: https://world-nuclear-news.org/Articles/Google,- Microsoft-and-Nucor-team-up-on-clean-energ (дата обращения 27.01.2025)
- 23. Google заключила договор на покупку электричества от малого модульного атомного реактора [Электронный ресурс] // RenEnergo: сайт. URL: https://renen.ru/google-zaklyuchila-dogovor-na-pokupku-elektrichestva-ot-malogo-modulnogo-atomnogo-reaktora/ (дата обращения 27.01.2025)
- 24. Microsoft планирует возобновить работу атомной электростанции Three Mile Island, которая cut не стала причиной катастрофы [Электронный ресурс] // Shazoo: сайт. URL: https://shazoo.ru/2024/09/21/160380/microsoft-planiruet-vozobnovit-rabotu-atomnoi-elektrostancii-three-mile-island-kotoraia-cut-ne-stala-pricinoi-katastrofy (дата обращения 27.01.2025)

Shevaldina Elena Ivanovna, Candidate of Sociological Sciences, Associate Professor, Ufa State Petroleum Technical University, Ufa, Russia.

Shevaldina Kseniya Stanislavovna, student of the field of study: "Physics of Quantum Systems and Quantum Technologies", Institute of Physics, Kazan (Volga Region) Federal University, Kazan, Russia.

ATOMIC ENERGY DATA CENTER

Abstract. In the context of increasing electricity consumption caused by the development of artificial intelligence and increasing amounts of data, data centers face serious challenges in ensuring stable energy supply. Nuclear power engineering, especially Small Modular Reactors (SMR), is a promising solution capable of providing data centers with reliable and environmentally friendly energy. These reactors can operate around the clock and generate significant amounts of low-carbon energy, contributing to the decarbonization of the sector. However, the implementation of SMR in data centers is associated with regulatory barriers, public opinion, and limited availability of technology. The article discusses the necessity, prerequisites, advantages and difficulties of creating nuclear-powered data centers by integrating SMR into the data center infrastructure, as well as potential solutions to ensure sustainable energy supply in the face of growing demand for electricity.

Keywords: data processing center; data center; artificial intelligence; small modular reactors; power supply; nuclear energy.