УДК 629

Хамитова М.С., магистрант кафедры «Сервис Транспортных Систем», Набережночелнинский институт ФГАОУ ВО «Казанский федеральный университет», e-mail: milyaushakhamitova@yandex.ru

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА МЕТОДОВ И МОДЕЛЕЙ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ЗАПАСНЫХ ЧАСТЕЙ

Аннотация. В статье представлена сравнительная характеристика и описание методов и моделей для контроля качества запасных частей. Произведен анализ информационных систем класса ERP и WMS на наличие инструментов FMEA-анализа.

Ключевые слова: методы гистограммы, временные ряды, диаграммы Парето, причинно-следственные диаграммы, контрольные листки, контрольные карты, диаграммы рассеяния, модели для контроля качества запасных частей, качество, детали автомобилей

Введение

Организация фирменного сервисного обслуживания является ключевым фактором при обеспечении работоспособного состояния автомобилей. Чтобы гарантировать качество работ по техническому обслуживанию и ремонту автомобилей, необходимо обеспечить необходимое качество используемых запасных частей. От управления качеством запасных частей зависит износ и срок эксплуатации оборудования. Проблема состоит в том, что несвоевременное обнаружение дефекта запасных частей, может привести к авариям, простоям машин и механизмов, это негативно сказывается на предприятии ООО «КАМАЗ» в целом [1]. Именно поэтому актуальной задачей является подбор оптимального метода контроля качества запасных частей.

Методы и модели для контроля качества запасных частей

Приведем результаты анализа методов и моделей, которые могут быть использованы для анализа качества запасных частей грузового автомобиля:

1. Гистограммы позволяют оценивать состояние качества, представляют собой столбчатые графики по полученным данным за определенный период, которые разбиваются на несколько интервалов [2].

Достоинства:

- Наглядность, простота освоения и применения.
- Управление с помощью фактов, а не мнений.
- Чем больше объем выборки, тем больше уверенность в том, что три важных параметра гистограммы ее центр, ширина и форма представительны для всего процесса или для группы продукции.
- Возможность создания в простых офисных табличных редакторах типа MS Excel.

Недостатки:

- Если размер выборки мал, можно сделать неправильный вывод.
- Некачественный сбор первоначальной информации для построения диаграммы может отразиться на выводах.

На рисунке 1 представлен пример гистограммы:

Рисунок 1 – Пример гистограммы [3]

2. Временные ряды применяются для аналитики и прогнозирования, когда важно определить, что будет происходить с показателями в определенный период времени [2].

Достоинства:

- Наглядное представление данных.
- Простота в построении и использовании.

Недостатки:

- Необходимость выбора формы зависимости при выделении тренда и сезонной компоненты.
- Возможность создания в простых офисных табличных редакторах типа MS Excel.
- Некачественный сбор первоначальной информации для построения диаграммы может отразиться на выводах.

На рисунке 2 представлен пример временного ряда:

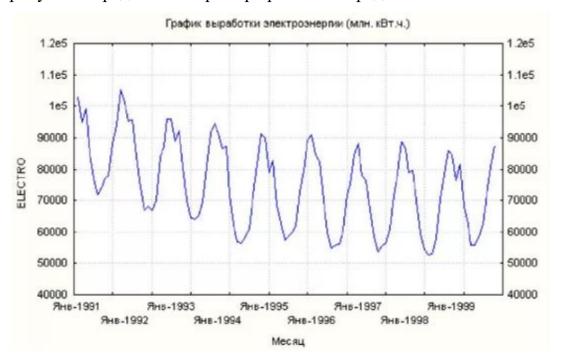


Рисунок 2 – Пример временного ряда [3]

3. Диаграммы Парето позволяют распределить усилия для решения проблем и выявлять основные причины, с которых нужно начинать действовать. Диаграмма Парето представляет собой упорядоченную нисходящую

гистограмму, отображающую виды производственных дефектов, а также частоту их возникновения [4].

Достоинства:

- Высокая скорость построения и анализа.
- Простота выполнения.
- Возможность создания в простых офисных табличных редакторах типа MS EXCEL.
- Легкость анализа и нахождения приоритетных задач для устранения брака.

Недостатки:

• Некачественный сбор первоначальной информации для построения диаграммы может отразиться на выводах.

На рисунке 3 представлен пример диаграммы Перето:

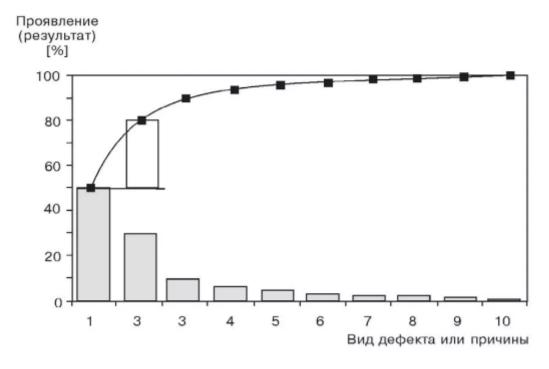


Рисунок 3 – Пример диаграммы Парето [3]

4. Причинно-следственные диаграммы представляют собой график, на основе которого становится возможным исследовать и определить основные причинно-следственные связи факторов и последствий в интересующей

проблеме или ситуации, а также предупредить возникновение нежелательных факторов и причин.

Достоинства:

• Не рассматривается логическая проверка цепочки причин, ведущих к первопричине, т. е. отсутствуют правила проверки в обратном направлении от первопричины к результатам.

Недостатки:

• Сложная и не всегда четко структурированная диаграмма не позволяет делать правильные выводы.

На рисунке 4 представлен пример причинно-следственной диаграммы:

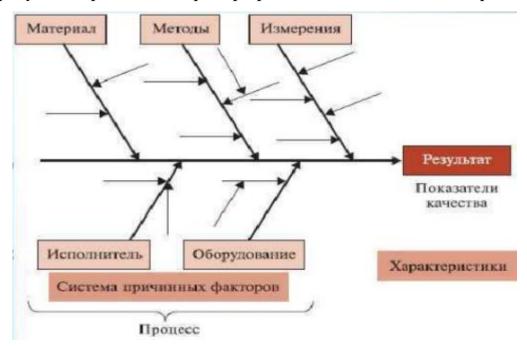


Рисунок 4 – Пример причинно-следственной диаграммы [3]

5. Контрольные листки являются формой для регистрации и подсчета данных, собираемых в результате наблюдений или измерений контролируемых показателей в течении установленного периода времени. Собираемые данные могут быть как целочисленными (например, число дефектов), так и интервальными (например, диапазон значений измерений).

Достоинства:

- Систематизация данных для работы с другими инструментами качества.
 - Применение единой формы для регистрации.
 - Наглядность, простота освоения и применения.

Недостатки:

• Заранее заданные категории данных, то есть если в процессе наблюдений найдется событие, которое ранее не было определено в контрольном листке, то это событие не будет зарегистрировано в контрольном листке.

В таблице 1 представлен пример контрольного листка:

Наименование документа Контрольный листок по видам дефектов Предприятие 000 Количество деталей Изделие Втулка «Кристалл» Цех 70 3 Операция Сверление **Участок** Контролёр 3.2 Иванов Итого Типы дефектов: Данные контроля 111 3 Несоответствие размеров Неправильная обработка # Отклонение в размере Внешний дефект 1111 4 Итого

Таблица 1 – Пример контрольного листка [3]

6. Контрольные карты используют для сравнения получаемой по выборкам информации о текущем состоянии процесса с контрольными границами, представляющими пределы собственной изменчивости (разброса) процесса.

Достоинства:

- Дают возможность визуально определить момент изменения процесса.
- Создают основу для улучшения процесса.
- Выявляют различия между случайными и системными нарушениями в процессе.

Недостатки:

- Имеют высокие требования к подготовке персонала и необходимость работы в реальном времени.
- Некачественный сбор первоначальной информации для построения диаграммы может отразиться на выводах.

На рисунке 5 представлен пример контрольной карты:

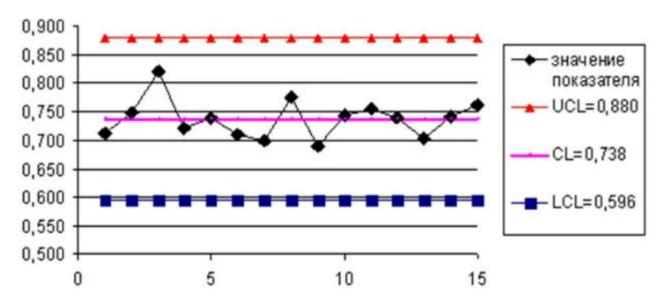


Рисунок 5 – Пример контрольной карты [5]

7. Диаграммы рассеяния являются инструментами статистического контроля (анализа), с помощью которых выявляется зависимость и характер связи между двумя разными параметрами экономического явления, производственного процесса.

Достоинства: Наглядность и простота оценки связей между двумя переменными.

Недостатки: К оценке диаграммы следует привлекать специалистов, владеющих информацией о продукции, чтобы исключить неправильное использование этого инструмента.

На рисунке 6 представлен пример диаграммы рассеяния:

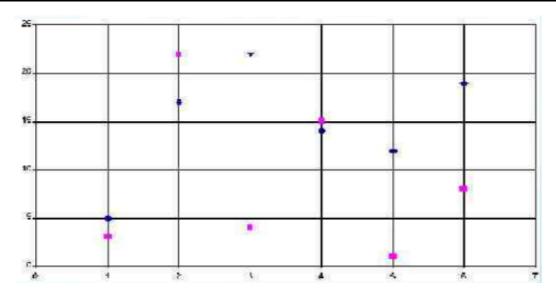


Рисунок 6 – Пример диаграммы рассеяния [3]

8. FMEA (Failure modes and effects analysis) представляет собой анализ причин и последствий отказов [6]. Метод анализа FMEA используется в менеджменте качества для определения потенциальных дефектов (несоответствий) и причин их возникновения в изделии, процессе или услуге [9]. Он применяется для выявления проблем до того, как они проявятся и окажут воздействие на потребителя.

Достоинства:

- Выявление дефектов на ранней стадии.
- Эффективное влияние на качество продукции даже на стадии разработки.
- Дает возможность привлечь разных специалистов, таких как специалистов по применяемым материалам, службы качества, представителей службы закупок и специалистов поставщиков.

Недостатки:

- Трудоемкость в проведении для сложных (технических) систем и изделий.
- Неэффективность в случае неправильного применения.
- Малая эффективность в случае его несвоевременного проведения [8]. В таблице 2 представлен пример FMEA-анализа:

Процесс	Вид потен- циального дефекта	Последствия по- тенциального дефекта	5	Потении- альная при- чина дефек- та	0	Первона- чально предложен- ные меры по обнару- жению де- фекта	D	ПЧ Р	Рекомен- дуемое из- менение	Результаты работы				
										предпри- нятые дей- ствия	значения баллов			
											S	0	D	P
Процесс произ- водства линейных люми- несцент- ных ламп	Наличие гря- зи внутри трубки	Снижение темпе- ратуры свечения и цветопередачи	4	Плохая про- мывка труб- ки	5	Визуальный осмотр ра- бочим	3	60	Увеличение мощности подачи воды	Увеличена мощность подачи во- ды	4	4	3	48
	Наличие пре- шин на труб- ке	Снижение долго- вечности, утечка газов и паров рту- ти, попадание воз- духа в трубку	0	Жесткий контакт ра- ботакицего оборудова- ния с груб- ками	7	Визуальный осмотр ра- бочим	3	210	Сделать на- стил конвей- ерной линии более безо- пасным (митким)	Вся конвей- ерная линия покрыта 2мм. ткане- вым насти- лом	1 0	5	3	150
	Неравномер- ное распреде- ление люми- нофора внут- ри трубки	Снижение температуры свечения, а так же цветопередачи	4	Слабая по- дача насосом люминофора в трубку	5	Рабочий специаль- ным прибо- ром измеря- ет толщину нанесенного люминофора	3	60	Стабилизи- ровать дав- ление насоса	Проведена калибровка насоса	4	4	en	48
	Плохая про- водимость тока катодом	Снижение температуры свечения и цветопередачи, мерцание	4	Неравномер- ное покры- тие катода эмиссион- ньы вещест- вом	8	Проверяется на послед- нем этапе, в тестируемой установке	5	200	Заменить чашу с эмис- сионным веществом на большую по размерам	Заменена чаша с эмиссион- ным веще- ством	4	5	5	100

Таблица 2 – Пример FMEA-анализа [10]

Анализ инструментальных средств класса ERP

Наиболее распространенной ERP-системой на территории Российской Федерации является информационные решения фирмы 1С (45%). Второе место занимает Microsoft (14,5%), третье – Корпорация «Галактика» (12%) [11]. Однако они не позволяет производить анализ качества запасных частей и деталей. Мы нашли решение 1С:RCM Управление надежностью, позволяющее оптимизировать профилактические и диагностические программы технического обслуживания активов предприятия с использованием FMEA-анализа [12].

Заключение

Рассмотрев все вышеперечисленные методы, необходимо отметить, что только FMEA позволяет комплексно оценить изделие по вероятности возникновения дефектов, по вероятности их обнаружения и тяжести последствий для потребителя. Анализ программных продуктов показал, что программная реализация данного метода отсутствует в информационных системах класса ERP,

поэтому актуальным является создание программного модуля как дополнения к информационной системе учета претензий по качеству запасных частей.

Список использованных источников

- 1. Скороходов Д.М. [Электронный ресурс] // Совершенствование методов и средств контроля качества запасных частей сельскохозяйственной техники: сайт. UPL: http://old.timacad.ru/catalog/disser/kd/skorohodov/disser.pdf?ysclid=l2qewin9ki (дата обращения: 03.05.2022)
- 2. Студопедия: Гистограмма как инструмент качества [Электронный ресурс]. Режим доступа:https://studopedia.ru/3_5611_gistogramma-kak-instrument-kachestva.html? (дата обращения: 03.05.2022)
- 3. Центр креативных технологий: метод диаграмма разброса [Электронный ресурс]. Режим доступа: https://www.inventech.ru/pub/methods/metod-0014/ (дата обращения: 03.05.2022)
- 4. Диаграмма
 Парето [Электронный ресурс].
 Режим доступа:https://ozlib.com/1112512/ekonomika/diagramma_pareto/
 (дата обращения: 03.05.2022)
- 5. Статистические методы. Контрольные карты Шухарта в лаборатории Электронный ресурс]. Режим доступа: https://zen.yandex.ru/media/id/60fbcb9e51197c3f21227e8c/statisticheskie-metody-kontrolnye-karty-shuharta-v-laboratorii-60fd5f9cbb5d9f5153942798/ (дата обращения: 03.05.2022)
- 6. WIKIPEDIA Анализ режимов и эффектов отказов [Электронный ресурс]. Режим доступа:https://translated.turbopages.org/proxy_u/en-ru.ru.a071f3d9-6271656a-c3ea4165-
 - 74722d776562/https/en.wikipedia.org/wiki/Failure_Mode_and_Effects_Analysis_(F MEA) (дата обращения: 03.05.2022)
- 7. Методы и инструменты управления качеством продукции Электронный ресурс]. Режим

- доступа:https://ozlib.com/1091690/ekonomika/metody_instrumenty_upravleniya_ka chestvom produktsii (дата обращения:03.05.2022)
- 8. KPMS Менеджмент качества [Электронный ресурс]. Режим доступа: https://www.kpms.ru/Implement/Qms_FMEA.htm (дата обращения: 03.05.2022)
- 9. А.С.Акулова Повышение результативности и эффективности процессов предприятия на основе методов управления качеством [Электронный ресурс]. Режим доступа: https://dspace.tltsu.ru/bitstream/123456789/1515/1/%D0%90%D0%BA%D1%83% D0%BB%D0%BE%D0%B2%D0%B0%20%D0%90.%D0%A1._%D0%A3%D0% 9A%D0%B1_1201.pdf (дата обращения: 03.05.2022)
- 10.Клепча Н.И. Оценка процесса производства с использованием инструментов менеджмента качества в ООО "ПКФ "Промтранскомплект" [Электронный ресурс]. Режим доступа: https://ppt-online.org/15473 (дата обращения: 03.05.2022)
- 11. Обзор российского рынка ERP-систем [Электронный ресурс]. Режим доступа: https://wiseadvice-it.ru/o-kompanii/blog/articles/obzor-rossiiskogo-rynka-erp-sistem/(дата обращения: 03.05.2022).
- 12.1C:RCM Управление надежностью [Электронный ресурс]. Режим доступа: https://solutions.1c.ru/catalog/eam-rcm/features (дата обращения: 03.05.2022).

Khamitova M.S., Master student of the Department of Transport Systems Service, Naberezhnye Chelny Institute, Kazan Federal University, e-mail: milyaushakhamitova@yandex.ru

COMPARATIVE CHARACTERISTICS OF METHODS AND MODELS FOR QUALITY CONTROL OF SPARE PARTS

Abstract: The article presents a comparative characteristic and description of methods and models for quality control of spare parts. The analysis of information systems of ERP and WMS class on the presence of FMEA-analysis tools is made.

Keywords: methods histograms, time series, Pareto charts, cause-and-effect charts, checklists, control charts, scatter charts and models for quality control of spare parts, quality, vehicle parts