Analysis of fuzzy logic methods application in vehicle safety enhancement
Abstract
The article explores the application of fuzzy logic methods to improve vehicle safety amid rising accident rates on Russian roads. The authors demonstrate how adaptive systems based on fuzzy sets enable the analysis of dynamic and uncertain risk factors, such as weather conditions, driving behavior, and traffic density. Using a road accident risk assessment model as an example, the study highlights the approach’s effectiveness in processing qualitative data and enabling real-time decision-making. The research confirms that integrating fuzzy logic into intelligent transportation systems can reduce accidents by leveraging flexibility and incorporating expert knowledge.
About the Authors
R. N. SafiullinRussian Federation
Doctor of Technical Sciences, Professor
A. V. Sorvanov
Russian Federation
Master’s Student
References
1. Сырцова, Е. А. Эффекты внедрения интеллектуальных транспортных систем в регионах России / Е. А. Сырцова // Государственное управление. Электронный вестник. – 2023. – № 101. – С. 159-169. – DOI 10.24412/2070-1381-2023-101-159-169. – EDN RHWEOJ.
2. Полная статистика ДТП по России по месяцам в 2024 году [Электронный ресурс]. – Режим доступа: https://rusdtp.ru/stat-dtp/ (дата обращения 28.04.2025)
3. Хамитов, Р. М. Искусственный интеллект в транспортной сфере как средство повышения безопасности / Р. М. Хамитов, О. В. Князькина, А. В. Шорохова // Автомобиль. Дорога. Инфраструктура. – 2024. – № 1(39). – EDN HUPITB.
Review
For citations:
Safiullin R.N., Sorvanov A.V. Analysis of fuzzy logic methods application in vehicle safety enhancement. Social-economic and technical systems: research, design and optimization. 2025;(2):78-82. (In Russ.)






