Methodology for assessing the efficiency of the passenger transportation process in urban agglomeration
Abstract
The article proposes a formed method for assessing the efficiency of passenger transport systems based on the integration of fuzzy logic with a multicriteria decision-making system. Addressing the limitations of traditional approaches in handling subjective and uncertain data, we propose a framework that synthesises economic, operational, social, environmental and safety criteria. The methodology employs Gaussian fuzzy membership functions and a rule-based inference system to quantify efficiency, enabling dynamic optimisation of transport routes. This approach provides transport operators with a scalable tool to improve service quality, sustainability and passenger satisfaction in urban mobility systems.
About the Authors
S. A. ParraRussian Federation
Postgraduate student of the 2nd year. Departments of Transport and Technological Processes and Machines Empress
R. N. Safiullin
Russian Federation
Dr.Sc., Professor, Departments of Transport and Technological Processes and Machines Empress
A. F. Sorvanov
Russian Federation
Departments of Transport and Technological Processes and Machines Empress
References
1. Kurganov V.M, Gryaznov M.V, Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes // Journal of Mining Institute. 2020. Vol. 241. p. 10-21. DOI: 10.31897/PMI.2020.1.10.
2. Semenova T., Martínez Santoyo J.Y. Determining Priority Areas for the Technological Development of Oil Companies in Mexico // Resources. 2025. Vol. 14, № 1. https://doi.org/10.3390/resources14010018.
3. Safiullin R., Efremova V., Ivanov B. The Method of Multi-criteria Evaluation of the Effectiveness of the Integrated Control System of a Highly Automated Vehicle. Open Transp J, 2024; 18: e18744478309909. http://dx.doi.org/10.2174/0118744478309909240807051315.
4. Bruzzone F., Cavallaro F., Nocera S. Environmental and energy performance of integrated passenger–freight transport // Transp. Res. Interdiscip. Perspect. 2023. Vol. 22. P. 100958. https://doi.org/10.1016/j.trip.2023.100958.
5. Ong A.K.S. et al. Utilizing a machine learning ensemble to evaluate the service quality and passenger satisfaction among public transportations // J. Public Transp. 2023. Vol. 25. P. 100076. https://doi.org/10.1016/j.jpubtr.2023.100076.
6. Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250. p. 553-561. DOI: 10.31897/PMI.2021.4.8.
7. Dömény I., Dolinayová A., Čarný Š. Methodology Proposal of Monitoring Economic Indicators in a Railway Passenger Transport Company Using Controlling Tools // Transp. Res. Procedia. 2021. Vol. 55. P. 141–151. https://doi.org/10.1016/j.trpro.2021.06.015.
8. Балгабеков Т.К., Каиржан Б.Б. Повышение Эффективности Использования Транспортных Средств При Транспортировке Грузов // Наука И Мир. 2018. № № 10-2(62). P. 10–13.
9. Grube T. et al. Passenger car cost development through 2050 // Transp. Res. Part Transp. Environ. 2021. Vol. 101. P. 103110. https://doi.org/10.1016/j.trd.2021.103110.
10. Kim K., Matsuhashi K., Ishikawa M. Analysis of primary-party traffic accident rates per driver in Japan from 1995 to 2015: Do older drivers cause more accidents? // IATSS Res. 2023. Vol. 47, № 4. P. 447–454. https://doi.org/10.1016/j.iatssr.2023.09.001.
11. Li X. et al. Comprehensive evaluation model of the urban low-carbon passenger transportation structure based on DPSIR // Ecol. Indic. 2023. Vol. 146. P. 109849. https://doi.org/10.1016/j.ecolind.2022.109849.
12. Rojas C. et al. Short run “rebound effect” of COVID on the transport carbon footprint // Cities. 2022. Vol. 131. P. 104039. https://doi.org/10.1016/j.cities.2022.104039.
13. Maksimov A.L et al. Physico-chemical aspects and carbon footprint of hydrogen production from water and hydrocarbons // Journal of Mining Institute. 2024. Vol. 265. p. 87-94. EDN HWCPDC.
14. Shojaee Barjoee S., Rodionov V., Vaziri Sereshk A.M. Noise climate assessment in ceramic industries (Iran) using acoustic indices and its control solutions // Adv. Environ. Technol. 2025. Vol. 11, № 1. P. 91–115. https://doi.org/10.22104/aet.2024.6922.1899.
15. Meethom W., Koohathongsumrit N. A decision support system for road freight transportation route selection with new fuzzy numbers // foresight. Emerald Publishing Limited, 2020. Vol. 22, № 4. P. 505–527. https://doi.org/10.1108/FS10-2019-0090.
16. Shen, L., et al. Transportation routes evaluation: A delphi and CFPR approach. J. Intell. Fuzzy Syst. 41 (4), 4841–4854. https://doi.org/10.3233/jifs189969. 2021. https://doi.org/10.3233/jifs-189969.
17. Lu W., Choi S.-B., Yeo G.-T. Resilient route selection of oversized cargo transport: the case of South Korea–Kazakhstan // Int. J. Logist. Manag. Emerald Publishing Limited, 2022. Vol. 33, № 2. P. 410–430. https://doi.org/10.1108/IJLM-11-2020-0445.
18. Wang N., Chen M., Wang N. An Improved CBBA Generation Method Based on Triangular Fuzzy Numbers // Int. J. Comput. Intell. Syst. 2024. Vol. 17, № 1. P. 22. https://doi.org/10.1007/s44196-023-00398-0.
19. Koohathongsumrit N., Chankham W., Meethom W. Multimodal transport route selection: An integrated fuzzy hierarchy risk assessment and multiple criteria decision-making approach // Transp. Res. Interdiscip. Perspect. 2024. Vol. 28. P. 101252. https://doi.org/10.1016/j.trip.2024.101252.
20. Safiullin R. N.,, Parra A. Z. Comprehensive Assessment of the Effectiveness of Passenger Transportation Processes using Intelligent Technologies // Open Transp. J. 2024. Vol. 18. https://doi.org/10.2174/0126671212320514240611100437.
21. Ohia N.P. et al. Artificial intelligence-driven fuzzy logic approach for optimal well selection in gas lift design: A brown field case study // Results Eng. 2025. Vol. 25. P. 103927. https://doi.org/10.1016/j.rineng.2025.103927.
Review
For citations:
Parra S.A., Safiullin R.N., Sorvanov A.F. Methodology for assessing the efficiency of the passenger transportation process in urban agglomeration. Social-economic and technical systems: research, design and optimization. 2025;(3):109-124. (In Russ.)






