Hybridization of swarm intelligence algorithms in group autonomous vehicles
Abstract
This article provides a systems analysis of the problems of managing groups of autonomous vehicles (AVS) in an industrial environment. Key technological challenges are identified. The goal of the study is to develop a decentralized algorithm based on swarm intelligence. Four key tasks are defined: from analyzing existing methods to validating them in a simulator. Particular attention is paid to the evaluation criteria: replanning time ≤50 ms, positioning accuracy ≤0.1 m. The article contains a detailed analysis of three fundamental swarm intelligence algorithms in terms of their applicability to AV tasks. Calculation formulas for each method (for example, speed update in PSO) and a comparative table for 5 criteria, including scalability and resistance to interference are provided. It is revealed that none of the algorithms meets all the requirements, which justifies the need for a hybrid approach. The article proposes specific modifications of the basic algorithms for industrial applications. The architecture of the hybrid solution is developed. Test plans with metrics are provided: response time, accuracy, energy consumption. General conclusion: A systematic approach to the adaptation of swarm algorithms will help solve key problems of industrial enterprises in the field of autonomous transport systems management.
About the Author
I. M. SirazutdinovRussian Federation
1 st year magistracy student
References
1. Li X., Chen W. Kinematic-constrained Particle Swarm Optimization for Autonomous Vehicle Path Planning // IEEE Transactions on Intelligent Vehicles. – 2021. – Vol. 6(2). – P. 282-295.
2. Chen H., Wang M. Hybrid ACO-Potential Field Method for Dynamic Obstacle Avoidance // Robotics and Autonomous Systems. – 2022. – Vol. 148. – P. 103912.
3. Патент RU 2756487 C1. Способ управления группой беспилотных транспортных средств с использованием роевого интеллекта / Иванов А.А. и др. – 2021.
4. Патент US 10,726,152 B2. System and Method for Vehicle Swarm Navigation Using Modified PSO / Smith J. – 2020.
5. Миронов Д.П. Алгоритмы роевого интеллекта: теория и практика. – М.: Издво МГТУ им. Баумана, 2020. – 456 с.
6. Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press, 2016. – 800 p. (Глава 12: Optimization Algorithms)
7. Siegwart R., Nourbakhsh I.R. Introduction to Autonomous Mobile Robots. – 2nd ed. – MIT Press, 2011. – 473 p.
8. ISO 22737:2021. Intelligent transport systems — Low-speed automated driving (LSAD) systems for predefined routes — Performance requirements and test procedures.
9. SAE J3016_202104. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
10. Петров С.И. Алгоритмы группового управления автономными транспортными средствами в условиях неопределенности: Дис. ... канд. техн. наук. – М.: МАДИ, 2022. – 178 с.
11. Zhang L. et al. Decentralized Control for Autonomous Vehicle Swarms Using Adaptive Flocking // 2023 IEEE Intelligent Vehicles Symposium (IV). – 2023. – P. 1-8.
12. Kamaз Internal Report No. TR-2023-05. V2X Communication Testing Results for Autonomous Truck Platooning. – 2023. – 45 p.
13. CARLA Autonomous Driving Simulator. Technical Documentation. Version 0.9.14. – 2023. URL: https://carla.readthedocs.io/ (только техническая спецификация)
14. ROS 2 Humble Hawksbill Documentation. – 2023. URL: https://docs.ros.org/
15. Белоусов Б.С. Теория автоматического управления подвижными объектами. – СПб.: БХВ-Петербург, 2019. – 672 с.
16. Федосов Е.А. Интеллектуальные транспортные системы. – М.: Транспорт, 2020. – 488 с.
17. Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory // IEEE Transactions on Automatic Control. – 2006. – Vol. 51(3). – P. 401-420.
18. Труды VII Международной научной конференции "Автоматизация и роботизация в машиностроении". – М.: МГТУ им. Баумана, 2023. – С. 112-125.
19. Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (DARS 2020). 20. Robot Operating System (ROS) Documentation. Official ROS Wiki.
Review
For citations:
Sirazutdinov I.M. Hybridization of swarm intelligence algorithms in group autonomous vehicles. Social-economic and technical systems: research, design and optimization. 2025;(3):135-152. (In Russ.)






