Preview

Social-economic and technical systems: research, design and optimization

Advanced search

Evaluation the effectiveness of various machine learning methods in predicting student academic performance

Abstract

The article examines the possibilities of using machine learning to predict student performance in the context of a modern educational environment with evergrowing volumes of data. Key aspects of evaluating the effectiveness of various machine learning algorithms are analyzed. Attention is focused on the importance of adequate metrics, strict validation of models, and consideration of ethical considerations when implementing forecasting technologies. 

About the Authors

V. V. Chernykh
Federal State Budgetary Educational Institution of Higher Education "Lugansk State University named after Vladimir Dahl"
Russian Federation

Candidate of Technical Sciences 



A. V. Balalaechnikov
Federal State Budgetary Educational Institution of Higher Education "Lugansk State University named after Vladimir Dahl"
Russian Federation

Senior Lecturer



References

1. Вилкова К.А. Учебная аналитика в традиционном образовании: ее роль и результаты / К.А. Вилкова, У.С. Захарова // Университетское управление: практика и анализ. – 2020. – Т. 24. – № 3. – С. 59–76

2. Fernandes E. et al. Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil // Journal of Business Research. 2019. No. 94. P. 335-343.

3. Царькова Е.Г. Учебная аналитика в дистанционном обучении: особенности применения и перспективы развития / Е.Г. Царькова // Прикладная психология и педагогика. – 2022. – Т. 7. – № 3. – С. 54–66.

4. Алпатов А.В. Применение машинного обучения для анализа образовательных результатов студентов вузов // Информационные и математические технологии в науке и управлении. 2023. № 4(32). С. 67-78.

5. Егорова Е.С., Попова Н.А. Data Mining в образовании: прогнозирование успеваемости учащихся // Моделирование, оптимизация и информационные технологии. 2023. № 11(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1325 (дата обращения: 30.04.2025).


Review

For citations:


Chernykh V.V., Balalaechnikov A.V. Evaluation the effectiveness of various machine learning methods in predicting student academic performance. Social-economic and technical systems: research, design and optimization. 2025;(3):231-241. (In Russ.)

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1991-6302 (Online)