Preview

Social-economic and technical systems: research, design and optimization

Advanced search

KINEMATIC CIRCUITS TRAJECTORY PLANNING USING A NEURAL NETWORK FOR SOLVING THE INVERSED KINEMATICS SUBTASK

Abstract

The possibility of using a pretrained artificial neural network in the problem of planning the trajectory of the executive kinematics chain for solving the inverse kinematics problem at the nodal points of the trajectory is investigated. The questions of approximation and the form of polynomials for sections of the executive kinematics chain motion trajectory; formation of a training sample of an artificial neural network to solve the inverse problem of kinematics; modelling the movement of the executive kinematics chain and determining the laws of change of generalized coordinates, velocities and accelerations in the implementation of a given trajectory are considered.

About the Authors

S. K. Shulgin
Federal State Budgetary Educational Institution of Higher Education «Luhansk Vladimir Dahl State University»
Russian Federation

Shulgin S.K. - candidate of technical sciences, associate professor

 



D. O. Sinepolsky
Federal State Budgetary Educational Institution of Higher Education «Luhansk Vladimir Dahl State University»
Russian Federation

Sinepolsky D.O. - Senior Lecturer 

 



V. A. Yurkov
Federal State Budgetary Educational Institution of Higher Education «Luhansk Vladimir Dahl State University»
Russian Federation

Yurkov V.A. - Senior Lecturer

 



References

1. S. Tejomurtula and S. Kak: «Inverse kinematics in robotics using neural networks» Information Sciences, Vol. 116, pp. 147–164, 1999.

2. A.V. Duka: «Neural network based inverse kinematics solution for trajectory tracking of a robotic arm» Procedia Technology, Vol. 12, pp. 20–27, 2014

3. Y. Maeda, T. Fujiwara and H. Ito: «Robot control using high dimensional neural networks» Procs. of SICE Annual Conference 2014, pp. 738–743, 2014

4. Фу, Кинсан. Робототехника / К. Фу, Р. Гонсалес, К. Ли; Перевод с англ. А. А. Сорокина и др.; под ред. В. Г. Градецкого. - М.: Мир, 1989. - 620с. : ил.; 22 см.;

5. Шахинпур, М. Курс робототехники / М. Шахинпур. – М.: Мир, 1990. – 527 с.

6. Шульгин С.К. Моделирование адаптивной системы позиционирования звена сферической кинематической пары на основе искусственной нейронной сети [Тект] / Шульгин С.К., Синепольский Д.О. // Вестник ЛГУ им. В. Даля / ГОУ ВО ЛНР ЛГУ им. В. Даля. – Луганск, 2022. – №6.

7. S. Tejomurtula and S. Kak: «Inverse kinematics in robotics using neural networks» Information Sciences, Vol. 116, pp. 147–164, 1999.

8. Y. Maeda, T. Fujiwara and H. Ito : «Robot control using high dimensional neural networks» Procs. of SICE Annual Conference 2014, pp. 738–743, 2014.

9. Practical optimization, Philip E. Gill, Walter Murray and Margret H. Wright, Academic Press Inc. (London) Limited, 1981.


Review

For citations:


Shulgin S.K., Sinepolsky D.O., Yurkov V.A. KINEMATIC CIRCUITS TRAJECTORY PLANNING USING A NEURAL NETWORK FOR SOLVING THE INVERSED KINEMATICS SUBTASK. Social-economic and technical systems: research, design and optimization. 2023;(2):131-138. (In Russ.)

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1991-6302 (Online)